540 research outputs found

    Mode excitation by turbulent convection in rotating stars. I. Effect of uniform rotation

    Full text link
    We focus on the influence of the Coriolis acceleration on the stochastic excitation of oscillation modes in convective regions of rotating stars. Our aim is to estimate the asymmetry between excitation rates of prograde and retrograde modes. We extend the formalism derived for obtaining stellar pp- and gg-mode amplitudes (Samadi & Goupil 2001, Belkacem et al. 2008) to include the effect of the Coriolis acceleration. We then study the special case of uniform rotation for slowly rotating stars by performing a perturbative analysis. This allows us to consider the cases of the Sun and the CoRoT target HD 49933. We find that, in the subsonic regime, the influence of rotation as a direct contribution to mode driving is negligible in front of the Reynolds stress contribution. In slow rotators, the indirect effect of the modification of the eigenfunctions on mode excitation is investigated by performing a perturbative analysis of the excitation rates. It turns out that the excitation of solar pp modes is affected by rotation with excitation rates asymmetries between prograde and retrograde modes of the order of several percents. Solar low-order gg modes are also affected by uniform rotation and their excitation rates asymmetries are found to reach up to 10 %. The CoRoT target HD 49933 is rotating faster than the Sun (Ω/Ω8\Omega / \Omega_\odot \approx 8) and we show that the resulting excitation rates asymmetry is about 10 % for the excitation rates of pp modes. We have then demonstrated that pp and gg mode excitation rates are modified by uniform rotation through the Coriolis acceleration. Study of the effect of differential rotation is dedicated to a forthcoming paper.Comment: 9 pages, 4 figures, accepted in A&

    Period spacings in red giants I. Disentangling rotation and revealing core structure discontinuities

    Full text link
    Asteroseismology allows us to probe the physical conditions inside the core of red giant stars. This relies on the properties of the global oscillations with a mixed character that are highly sensitive to the physical properties of the core. However, overlapping rotational splittings and mixed-mode spacings result in complex structures in the mixed-mode pattern, which severely complicates its identification and the measurement of the asymptotic period spacing. This work aims at disentangling the rotational splittings from the mixed-mode spacings, in order to open the way to a fully automated analysis of large data sets. An analytical development of the mixed-mode asymptotic expansion is used to derive the period spacing between two consecutive mixed modes. The \'echelle diagrams constructed with the appropriately stretched periods are used to exhibit the structure of the gravity modes and of the rotational splittings. We propose a new view on the mixed-mode oscillation pattern based on corrected periods, called stretched periods, that mimic the evenly spaced gravity-mode pattern. This provides a direct understanding of all oscillation components, even in the case of rapid rotation. The measurement of the asymptotic period spacing and the signature of the structural glitches on mixed modes are then made easy. This work opens the possibility to derive all seismic global parameters in an automated way, including the identification of the different rotational multiplets and the measurement of the rotational splitting, even when this splitting is significantly larger than the period spacing. Revealing buoyancy glitches provides a detailed view on the radiative core.Comment: Accepted in A&

    Enhanced antiproton production in Pb(160 AGeV)+Pb reactions: evidence for quark gluon matter?

    Get PDF
    The centrality dependence of the antiproton per participant ratio is studied in Pb(160 AGeV)+Pb reactions. Antiproton production in collisions of heavy nuclei at the CERN/SPS seems considerably enhanced as compared to conventional hadronic physics, given by the antiproton production rates in pppp and antiproton annihilation in pˉp\bar{p}p reactions. This enhancement is consistent with the observation of strong in-medium effects in other hadronic observables and may be an indication of partial restoration of chiral symmetry

    Time-Resolved Ultrafast Transient Polarization Spectroscopy to Investigate Nonlinear Processes and Dynamics in Electronically Excited Molecules on the Femtosecond Time Scale

    Get PDF
    We report a novel experimental technique to investigate ultrafast dynamics in photoexcited molecules by probing the third-order nonlinear optical susceptibility. A non-colinear 3-pulse scheme is developed to probe the ultrafast dynamics of excited electronic states using the optical Kerr effect by time-resolved polarization spectroscopy. Optical heterodyne and optical homodyne detection are demonstrated to measure the third-order nonlinear optical response for the S1 excited state of liquid nitrobenzene, which is populated by 2-photon absorption of a 780 nm 35 fs excitation pulse.Comment: 12 pages, 4 figures. Changes from previous version: added panel labels to figures 3-

    Event-by-event fluctuations of the charged particle ratio from non-equilibrium transport theory

    Get PDF
    The event by event fluctuations of the ratio of positively to negatively charged hadrons are predicted within the UrQMD model. Corrections for finite acceptance and finite net charge are derived. These corrections are relevant to compare experimental data and transport model results to previous predictions. The calculated fluctuations at RHIC and SPS energies are shown to be compatible with a hadron gas. Thus, deviating by a factor of 3 from the predictions for a thermalized quark-gluon plasma.Comment: This paper clarifies the previous predictions of Jeon and Koch (hep-ph/0003168) and addresses issues raised in hep-ph/0006023. 2 Figures, 10pp, uses RevTe

    Relativistic Hadron-Hadron Collisions in the Ultra-Relativistic Quantum Molecular Dynamics Model (UrQMD)

    Get PDF
    Hadron-hadron collisions at high energies are investigated in the Ultra-relativistic-Quantum-Molecular-Dynamics approach (UrQMD). This microscopic transport model is designed to study pp, pA and A+A collisions. It describes the phenomenology of hadronic interactions at low and intermediate energies (s<5\sqrt s <5 GeV) in terms of interactions between known hadrons and their resonances. At high energies, s>5\sqrt s >5 GeV, the excitation of color strings and their subsequent fragmentation into hadrons dominates the multiple production of particles in the UrQMD model. The model shows a fair overall agreement with a large body of experimental h-h data over a wide range of h-h center-of-mass energies. Hadronic reaction data with higher precision would be useful to support the use of the UrQMD model for relativistic heavy ion collisions.Comment: 66 pages, Download the UrQMD model from http://www.th.physik.uni-frankfurt.de/~urqmd/urqmd.htm

    Period-luminosity relations in evolved red giants explained by solar-like oscillations

    Full text link
    Solar-like oscillations in red giants have been investigated with CoRoT and Kepler, while pulsations in more evolved M giants have been studied with ground-based microlensing surveys. After 3.1 years of observation with Kepler, it is now possible to make a link between these different observations of semi-regular variables. We aim to identify period-luminosity sequences in evolved red giants identified as semi-regular variables. Then, we investigate the consequences of the comparison of ground-based and space-borne observations. We have first measured global oscillation parameters of evolved red giants observed with Kepler with the envelope autocorrelation function method. We then used an extended form of the universal red giant oscillation pattern, extrapolated to very low frequency, to fully identify their oscillations. From the link between red giant oscillations observed by Kepler and period-luminosity sequences, we have identified these relations in evolved red giants as radial and non-radial solar-like oscillations. We were able to expand scaling relations at very low frequency. This helped us to identify the different sequences of period-luminosity relations, and allowed us to propose a calibration of the K magnitude with the observed frequency large separation. Interpreting period-luminosity relations in red giants in terms of solar-like oscillations allows us to investigate, with a firm physical basis, the time series obtained from ground-based microlensing surveys. This can be done with an analytical expression that describes the low-frequency oscillation spectra. The different behavior of oscillations at low frequency, with frequency separations scaling only approximately with the square root of the mean stellar density, can be used to address precisely the physics of the semi-regular variables.Comment: Accepted in A&

    Angular momentum redistribution by mixed modes in evolved low-mass stars. I. Theoretical formalism

    Get PDF
    Seismic observations by the space-borne mission \emph{Kepler} have shown that the core of red giant stars slows down while evolving, requiring an efficient physical mechanism to extract angular momentum from the inner layers. Current stellar evolution codes fail to reproduce the observed rotation rates by several orders of magnitude, and predict a drastic spin-up of red giant cores instead. New efficient mechanisms of angular momentum transport are thus required. In this framework, our aim is to investigate the possibility that mixed modes extract angular momentum from the inner radiative regions of evolved low-mass stars. To this end, we consider the Transformed Eulerian Mean (TEM) formalism, introduced by Andrews \& McIntyre (1978), that allows us to consider the combined effect of both the wave momentum flux in the mean angular momentum equation and the wave heat flux in the mean entropy equation as well as their interplay with the meridional circulation. In radiative layers of evolved low-mass stars, the quasi-adiabatic approximation, the limit of slow rotation, and the asymptotic regime can be applied for mixed modes and enable us to establish a prescription for the wave fluxes in the mean equations. The formalism is finally applied to a 1.3M1.3 M_\odot benchmark model, representative of observed CoRoT and \emph{Kepler} oscillating evolved stars. We show that the influence of the wave heat flux on the mean angular momentum is not negligible and that the overall effect of mixed modes is to extract angular momentum from the innermost region of the star. A quantitative and accurate estimate requires realistic values of mode amplitudes. This is provided in a companion paper.Comment: Accepted in A&A, 11 pages, and 6 figure

    Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    Get PDF
    The detection of mixed modes in subgiants and red giants by the CoRoT and \emph{Kepler} space-borne missions allows us to investigate the internal structure of evolved low-mass stars. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 MM_{\odot} at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.Comment: Accepted in A&A, 7 pages, 8 figure

    Microscopic Analysis of Thermodynamic Parameters from 160 MeV/n - 160 GeV/n

    Get PDF
    Microscopic calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the reaction stages of highest density and during the expansion show that the system does not reach global equilibrium. Even if a considerable amount of equilibration is assumed, the connection of the measurable final state to the macroscopic parameters, e.g. the temperature, of the transient ''equilibrium'' state remains ambiguous.Comment: 13 pages, Latex, 8 postscript figures, Proceedings of the Winter Meeting in Nuclear Physics (1997), Bormio (Italy
    corecore